| 50 | 0 | 3 |
| Downloads | Citas | Reads |
精子发生决定了公畜繁殖能力。文章综述了表观遗传修饰在家畜精子发生过程中的调控作用,重点分析了DNA甲基化、组蛋白修饰及非编码RNA三类修饰参与精原干细胞更新、减数分裂、精子成熟等关键步骤的研究进展,介绍了表观遗传因子通过调控基因表达、染色质重塑和转座子沉默等方式,在精子发生及雄性生殖力维持中发挥的关键作用。同时,展望多组学技术与表观编辑技术在未来育种中的应用前景,为深入研究公畜生殖效能的分子调控机制提供理论基础和新见解。
Abstract:Spermatogenesis determines the reproductive capacity of male livestock. This review summarizes the regulatory roles of epigenetic modifications in the spermatogenesis process of livestock, with a focused analysis on the research progress regarding the involvement of three major types of modifications—DNA methylation, histone modifications, and non-coding RNAs—in key stages such as spermatogonial stem cell renewal, meiosis, and sperm maturation. It introduces how epigenetic factors play crucial roles in spermatogenesis and the maintenance of male fertility by regulating gene expression, chromatin remodeling and transposon silencing. Furthermore, the review prospects the application potential of multi-omics technologies and epigenetic editing techniques in future breeding programs, aiming to provide a theoretical basis and novel insights for in-depth research into the molecular regulatory mechanisms underlying male livestock reproductive efficiency.
[1]朱文倩,蔡宁宁,杨蕊,等.精子发生研究进展[J].生命科学,2020(10):1021-1028.
[2] GUI Y Q, YUAN S Q. Epigenetic regulations in mammalian spermatogenesis:RNA-m6A modification and beyond[J]. Cellular and Molecular Life Sciences, 2021, 78(11):4893-4905.
[3] ODRONIEC A, OLSZEWSKA M, KURPISZ M. Epigenetic markers in the embryonal germ cell development and spermatogenesis[J]. Basic and Clinical Andrology, 2023, 33(1):6.
[4] RAUTENBERG E K, HAMZAOUI Y, COLETTA D K. Minireview:Mitochondrial DNA methylation in type 2 diabetes and obesity[J]. Frontiers in Endocrinology, 2022, 13:968268.
[5] REZAEIAN A, KARIMIAN M, HOSSIENZADEH COLAGAR A.Methylation status of MTHFR promoter and oligozoospermia risk:an epigenetic study and in silico analysis[J]. Cell Journal, 2021,22(4):482-490.
[6] OAKES C C, SALLE S L, SMIRAGLIA D J, et al. Developmental acquisition of genome-wide DNA methylation occurs prior to meiosis in male germ cells[J]. Developmental Biology, 2007, 307(2):368-379.
[7] MARCHAL R, CHICHEPORTICHE A, DUTRILLAUX B, et al.DNA methylation in mouse gametogenesis[J]. Cytogenetic and Genome Research, 2004, 105(2-4):316-324.
[8] HOUSHDARAN S, CORTESSIS V K, SIEGMUND K, et al.Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm[J]. PLoS One, 2007, 2(12):e1289.
[9] ZHENG L M, ZHAI Y X, LI N, et al. Modification of Tet1 and histone methylation dynamics in dairy goat male germline stem cells[J]. Cell Proliferation, 2016, 49(2):163-172.
[10] FENG Y, ZHANG Y, WU J J, et al. Comprehensive analysis of methylome and transcriptome to identify potential genes regulating porcine testis development[J]. International Journal of Molecular Sciences, 2024, 25(16):9105.
[11] ZHANG Y, SIRARD M A. From sperm to offspring:epigenetic markers for dairy herd fertility[J]. Biology of Reproduction, 2025:ioaf056.
[12] COLOSIMO A, DI ROCCO G, CURINI V, et al. Characterization of the methylation status of five imprinted genes in sheep gametes[J]. Animal Genetics, 2009, 40(6):900-908.
[13] CAMERANO SPELTA RAPINI C, PESERICO A, DI BERARDINO C, et al. Investigating SMYD3 role during oocyte maturation in a 3D follicle-enclosed oocyte in vitro model in sheep[J]. Frontiers in Cell and Developmental Biology, 2025, 13:1625914.
[14] CHANG Y G, YI M L, WANG J, et al. Genetic regulation of N6-methyladenosine-RNA in mammalian gametogenesis and embryonic development[J]. Frontiers in Cell and Developmental Biology, 2022, 10:819044.
[15] LI T T, WANG H H, LUO R R, et al. Identification and functional assignment of genes implicated in sperm maturation of Tibetan sheep[J]. Animals, 2023, 13(9):1553.
[16] AN J H, QIN J Z, WAN Y, et al. Histone lysine methylation exhibits a distinct distribution during spermatogenesis in pigs[J].Theriogenology, 2015, 84(9):1455-1462.
[17] BEN MAAMAR M, NILSSON E E, SKINNER M K. Epigenetic transgenerational inheritance, gametogenesis and germline development[J]. Biology of Reproduction, 2021, 105(3):570-592.
[18] ZHOU S M, FENG S L, QIN W B, et al. Epigenetic regulation of spermatogonial stem cell homeostasis:from DNA methylation to histone modification[J]. Stem Cell Reviews and Reports, 2021, 17(2):562-580.
[19] VERMA A, RAJPUT S, KUMAR S, et al. Differential histone modification status of spermatozoa in relation to fertility of buffalo bulls[J]. Journal of Cellular Biochemistry, 2015, 116(5):743-753.
[20] FEUZ M B, NELSON D C, MILLER L B, et al. Reproductive Ageing:Current insights and a potential role of NAD in the reproductive health of aging fathers and their children[J].Reproduction, 2024, 167(6):e230486.
[21] CARRINGTON J C, AMBROS V. Role of microRNAs in plant and animal development[J]. Science, 2003, 301(5631):336-338.
[22] LI S N, WANG Q B, HUANG L, et al. miR-199-5p regulates spermiogenesis at the posttranscriptional level via targeting Tekt1 in allotriploid crucian carp[J]. Journal of Animal Science and Biotechnology, 2022, 13(1):44.
[23]梁高照,张国晖,李春,等.弱精子症与健康可育男性精子miRNA表达谱差异分析[J].医药前沿,2021(21):4-7.
[24] DHAHBI J M, CHEN J W, BHUPATHY S, et al. Specific PIWIinteracting RNAs and related small noncoding RNAs are associated with ovarian aging in Ames dwarf(df/df)mice[J]. The Journals of Gerontology:Series A, 2021, 76(9):1561-1570.
[25] LI X, ZHANG H, WANG Y, et al. Chi-circ_0009659 modulates goat intramuscular adipocyte differentiation through miR-3431-5p/STEAP4 axis[J]. Animal Bioscience, 2025, 38(4):577-587.
[26] REZA A M M T, CHOI Y J, HAN S G, et al. Roles of microRNAs in mammalian reproduction:from the commitment of germ cells to peri-implantation embryos[J]. Biological Reviews, 2019, 94(2):415-438.
[27] XU Z Q, XIE Y S, ZHOU C, et al. Expression pattern of seminal plasma extracellular vesicle small RNAs in boar semen[J].Frontiers in Veterinary Science, 2020, 7:585276.
[28] CHEUQUEMáN C, MALDONADO R. Non-coding RNAs and chromatin:key epigenetic factors from spermatogenesis to transgenerational inheritance[J]. Biological Research, 2021, 54(1):41.
[29] LI T T, WANG H H, MA K Y, et al. Identification and functional characterization of developmental-stage-dependent piRNAs in Tibetan sheep testes[J]. Journal of Animal Science, 2023, 101:skad189.
[30] SARI I, GUMUS E, TASKIRAN A S, et al. Effect of ovarian stimulation on the expression of PiRNA pathway proteins[J]. PLoS One, 2020, 15(5):e0232629.
[31] ARAVIN A, GAIDATZIS D, PFEFFER S, et al. A novel class of small RNAs bind to MILI protein in mouse testes[J]. Nature,2006, 442(7099):203-207.
[32] GOU L T, DAI P, YANG J H, et al. Pachytene piRNAs instruct massive mRNA elimination during late spermiogenesis[J]. Cell Research, 2014, 24(6):680-700.
[33] YU T, BIASINI A, CECCHINI K, et al. A-MYB/TCFL5regulatory architecture ensures the production of pachytene piRNAs in placental mammals[J]. RNA, 2022, 29(1):30-43.
[34] HE X L, LI B, FU S Y, et al. Identification of piRNAs in the testes of Sunite and Small-tailed Han sheep[J]. Animal Biotechnology,2021, 32(1):13-20.
[35]陈瑞,于帅,陈晓旭,等.非编码RNA对哺乳动物精子发生过程的调控[J].中国农业科学,2017, 50(2):380-390.
[36]伍仕鑫,徐传飞,孙磊,等.长链非编码RNA在哺乳动物精子发生中的功能研究进展[J].四川动物,2017, 36(1):114-120.
[37]陈盛,王高华.长链非编码RNA在抑郁症中的作用研究进展[J].神经损伤与功能重建,2022, 17(1):38-41.
[38] ZHANG Y L, YANG H, HAN L, et al. Long noncoding RNA expression profile changes associated with dietary energy in the sheep testis during sexual maturation[J]. Scientific Reports, 2017,7:5180.
[39] YANG H, WANG F, LI F Z, et al. Comprehensive analysis of long noncoding RNA and mRNA expression patterns in sheep testicular maturation[J]. Biology of Reproduction, 2018, 99(3):650-661.
[40] WU Y F, WEI Y C, LI Y L, et al. Sperm-derived CircRNA-1572regulates embryogenesis and zygotic genome activation by targeting CCNB2 via bta-miR-2478-L-2[J]. Advanced Science, 2025, 12(18):2414325.
Basic Information:
DOI:10.19848/j.cnki.ISSN1005-2739.2025.10.0004
China Classification Code:S814
Citation Information:
[1]刘春江,庞静,申依菲,等.表观遗传修饰影响家畜精子发生过程研究[J].黑龙江动物繁殖,2025,33(05):26-30.DOI:10.19848/j.cnki.ISSN1005-2739.2025.10.0004.
Fund Information:
南京农业大学基本科研业务费专项(YDZX2025004); 江苏省卓越博士后计划项目(2023ZB334)